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This paper deals with the grand canonical entropy of a lattice gas mixture. The 
entropy is a function of the multisite densities corresponding to the interaction 
pattern of the system in question. It is first evaluated for a nearest-neighbor- 
interaction, one-dimensional simple lattice gas to show how the structure of 
bulk fluid is locally maintained. Generalization requires one set of interrelations 
among multisite densities presented in closed form for an arbitrary lattice, and 
one set between Boltzmann factors and multisite densities which is written down 
for simply connected lattices. Application is made to two-row lattices, which 
turn out to have local behavior from this viewpoint, as do all single-row or 
Bethe lattices with complete range-p interactions. Nonlocal examples are also 
given, and suggestions made for approximation sequences in general lattices. 

KEY WORDS: Lattice gas; nonuniform fluid; entropy functional; nonlocal 
response; mixture; nonneighbor coupling; Bethe lattice. 

1. I N T R O D U C T I O N  

Analysis of exactly solvable models has always been one of the most effec- 
tive ways of reaching an understanding of the conceptual structure of a 
quantitative field. But developing useful models is rarely a trivial under- 
taking, and may require an expansion of the domain in which questions are 
to be posed. Even in the restricted discipline associated with classical fluids 
in thermal equilibrium, we are beginning to run out of simple models, an 
asertion which depends upon the format in which we work. The current 
standard for nonuniform fluids is the density functional formalism, in 
which an arbitrary external potential u(r )  can be accommodated via the 
inverse relation 

# - u ( r )  = 3 F [ n ] / b n ( r )  (1.1) 
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where u(r) is the density profile and F i n ]  the residual Helmholtz free 
energy in a grand ensemble at chemical potential #. The functional Fl-n] 
has been found explicitly (1'2) for some simple models, and in each case can 
be interpreted in terms of a free energy density which depends only upon 
a few local averages of the spatial density n(r). Extension of this structure 
to real fluids is a very active field (see, e.g., ref. 3), with verification in the 
main restricted to numerical comparisons. 

An apparently more grandiose approach might encompass both 
arbitrary external and internal pair potentials, with the entropy functional 
as the relevant generator. The point is this. For a pair potential interaction 
~b(r, r'), the grand potential f2 generates both one- and two-body densities 
n(r) and n2(r, r') via 

n(r) = 6gg[u, (k ]/fiu(r) 
(1.2) 

nz(r, r') = 2fif2[u, O]/fi/?(r, r') 

The external potential can be eliminated in favor of n(r) by a Legendre 
transformation: 

~b] = f2[u, ~b] + ( [# - u(r)] n(r) dr (1.3) Fin,  
J 

resulting in (1.1) as well as 

n2(r, r') = 2fiF[n, O ]/fiO(r, r') (1.4) 

But ~b(r, r') can similarly be eliminated, in principle, in favor of n2(r, r'): 

1 
TS[n, n2] = ~ f f  nz(r, r') ~(r, r') dr dr' - Fin, ~b] (1.5) 

so that 

u(r) - # = fiT Sin, nz]/fin(r) 

O(r, r ')= 2 f iTS[n, nz]/fin2(r, r') 
(1.6) 

The entropy designation follows from (1.3) and (1.5) in the form T S =  
U - ( G - P V ) .  Although our ability to encompass both arbitrary internal 
and external potentials in this fashion would be highly suspect if the func- 
tional were to cover In, n2] regions in which qualitative structural changes 
were to occur, it has recently been carried out without difficulty for one- 
dimensional classical fluids with nearest neighbor interaction. (4) And there 
is empirical evidence (5~ that a major region of real fluids may be 
describable by a simple entropy functional. 
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In the present paper, we start a more systematic approach to the con- 
struction of model entropy functionals by restricting attention to perhaps 
the simplest nontrivial category of fluids, that o f a  lattice gas mixture on 
the full one-dimensional integer lattice. Let us, for the purpose of orienta- 
tion, consider first the thermodynamic limit of a uniform one-dimensional 
lattice gas with nearest neighbor interaction J and chemical potential #. 
The simplest attack (6) is to compute the number of configurations 
{vx = 0, 1 } of an L-site lattice which are consistent with N+ occupied sites 
(v -- 1 ), No unoccupied (v = 0), N+ + adjacent occupied pairs, and similarly 
No+, N+o, No0. There are clearly N + - N + +  clusters of occupied sites 
of length /> 1, determined by N + -  N+ + leading particles. These leading 
particles can be selected from the amalgamated sequence of N+ occupied 
sites in 

N+ 

(N+-N++) 

ways. Similarly for the unoccupied sites, so that the total number of 
configurations is 

eS=( N+ ](No~ (1.7) 
kN+ + ]\Noo] 

Letting L--+ 0% with n+ =N+/L, etc., and observing that N + - N + +  = 
N+o, we have 

S/L=n+ lnn+ +nolnno-n++ l nn++  
(1.8) 

- n + o I n  n + o - n o  + I n  n o + - n o o  I n  n o o  

Alternatively, to make contact with (1.5) and (1.6), let w = e/~(~-u) and 
e = e  -~J be the external and internal Boltzmann factors at reciprocal 
temperature fl, so that the partition function in transfer matrix form is 

Hence 

0)( 1 
= T r ( l  w el) L 

(1 +ew+ s) L, where s=(1-ew)2+4w (1.9) 

82 l l n l  (1.10) 
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yielding 
~ Q  

O w L  s l + e w + s  

0 (2 1 - e w ( l - e w ) + e w s  
n + + =  - - t i e , e L -  s l + e w + s  

1 2 w -  ew(l  - ew) + ews 

(1.11) 

On solving (1.11) for e and w, we find 

f i ( U - l x ) = l n [ n + / ( 1 - n + ) ]  +21n(1 - 2 n +  + n + + ) / ( n + - n + + )  
(1.12) 

f l J=  - i n n +  + 2 1 n ( n + - n + + ) - l n ( 1 - 2 n +  + n + + )  

and quickly conclude from (1.6}, in its uniform lattice form, that indeed 
(1.8) holds, to within an additive constant. 

In the following sections, we first show that (1.8), interpreted as 
entropy density, extends directly to a nonuniform lattice gas. We then 
introduce the entropy functional for a general lattice gas mixture 
characterized by a local interaction pattern, and obtain a preliminary form 
for the profile equations. For the case of a one-dimensional lattice with 
fixed range of multisite interactions, and for a Bethe lattice as well, the 
profile equations are found explicitly in local form, as is the entropy 
functional. With this available as a tool, we show how reduction of the 
class of pairwise interactions applies to a primitive two-dimensional lattice, 
and continue by applying the same technique to bring in previously 
encountered nonlocal behavior. We conclude by suggesting how the 
present analysis may be extended to more complex but realistic fluids. 

2. PROTOTYPE 

The single-component, one-dimensional lattice gas with nearest 
neighbor interaction and external potential considered in (1.7)-(1.12) 
serves as a convenient entree to our discussion. Now, however, we allow 
for full nonuniformity of interaction strength, denoted by Yx.x+l,  and 
external potential Ux, with corresponding Boltzmann factors ex, x+~= 
e ~Jx, x+l, Wx = e ~<u u~l, and - oo < x < oo an integer. The partition function 
can therefore be written as 

Z =  • I-[e~,x+l(Vx, V x + ~ ) f I w ~ ( v ~ )  (2.1) 
{ v x = O , l }  x x 

where 

ex.x+ l(vx, Vx + ,) = e -~Jx'~'  . . . . .  ' 

Wx(Vx) = e-a<"~ ">~ 
(2.1) 
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Z converges if ux--* oo sufficiently rapidly as Ixl --* oo. It  is impor t an t  to 
note that  with the above  definition 

ex, x+l(O,~)=ex, x+t(o:,O)=l, Wx(0) = 1 (2.2) 

We will be interested in singlet and successive pair  densities, as well as 
successive higher densities. It  will be useful to generalize to the associated 
par t ic le-hole  occupat ion  densities, readily calculated as 

nx+ 1(0~) ~--- er(v~+ 1 = ~) 

= z~+,(~) 2~+ ~(~) wx+ ,(~)/z 

n~+l . . . .  +q(~l ' " ~ q )  

= Pr(v~ + ~ = el ..... v~+q = 7q) 

= Z x +  1(o~1) 2x+q(O~q) Wx+ 1(@1) --- Wx+ q(O~q) e~+ 1,x+2(21, OC2) 

X . . . e x +  q t,x+q(O~q+l,O~q)/Z (2.3) 

Here 

Z x ( ~ )  = E 1-1 ey,~+~(vy, vy+~)H wy(v~)e~_~,~(v~_~,c~) 
{vy=O,l;y<x 1} y<x--1 y<.x 

(2.4) 
2x(~)  = Z ]Flee,  y+l(Vy, Vy+l) ]-I wy(vy)ex, x+i(7, Vx+~) 

{vy=O,l;y>x} y>x y>x 

and Pr  denotes probabil i ty .  The cor responding  particle occupa t ion  
densities are therefore nx = nx(1 ), nx, x + ~ = nx, x + 1 (1, 1 ) ..... 

The short  range of the interact ion together  with the linear ordering of 
sites is responsible for the factorized form (v) of (2.3). This factorizat ion is 
more  usefully expressed in terms of a "superposi t ion  relat ion" a m o n g  the 
distributions,  to wit 

nx+ 1,x+2 ...... +q(0{l, ~ 2 , ' " ,  0~q) 

=nx+,,x+2(oq, o~2)"''Flx+q_l,x+q(O~ q i ,  O~q)/nx+2(c~2).. "Hx+q__l(O~q__l)  

(2.5) 

which follows at once f rom (2.3). But of course there are also interrelat ions 
between distr ibutions and Bol tzmann  factors. In part icular ,  we see that  

nx+l ....... +q(O~ 1 " '  "O~q) 

• Ew~+~(~2)-..wx+q_~(~q ~)ex+,.x+d~,, ~2) " "  

xex+q i,x+q(C%_l, % ) ] - 1  (2.6) 

822/60/'1-2-15 
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is independent  of 0{2,... , 0{q 1. Thus, 

nx+l ...... +q(0q . . . % )  

= n x + l  ...... +q(0{10 ...00{q) 

xwx+2(0{2) . . -wx+~ 1(0{~ 1) ex+l,x+2(0{1, 0{2) -'" 

Xex+q 1,~+q(%-1, 0{q) (2.7) 

which we further specialize to 

nx+l ...... + q (0 ,  0~12 " " "0{q 1, 0 ) 

= n x + l  ...... +q (0 . - . 0 )  

X W x + 2 ( ~ 2 ) ' " W x + q  l(0{q 1)ex+l,x+2(0{l,0{2) "'" 

• 1, 0{q) (2.8) 

The profile equations,  i.e., the expressions for e~+l,x+2(0{1, 0{2) and 
Wx(0{) in terms of the singlet and successive pair densities, readily follow 
from (2.5) and (2.8). First, using (2.8), we have 

w~(0{)=nx_l . . . .  +1(0, 0{,0) 
~tx-1 ..... +1(0 ,0 ,0 )  

ex+ l,x+ 2(0{1, 0{2) 

n~,~+ 1,~+2,~+3(0, 0{1, %,  0) 

nx, x+l,x+2,x+ 3(O , O, O, O) 

nx, x+l.x+2(O,O,O) nx+l,x+2,x+3(O,O,O) 
x (2.9) 

nx,~+ 1,x+2(0, 0{1, 0) n~+ l,x+2,x+3(0, 0{2, 0) 

and then, applying (2,5), 

Wx(0{) nx-  1,x( O, 0{) nx, x+ 1(0{, O) nx(O ) 
n.,~(0{) nx_ ,,~(0, O) nx, x + 1(0, 0) 

e~+ 1.~+ 2(0{1, 0{2) - nx+ 1,~+ 2(0{l, 0{2) n~+ 1,x+ 2(0, 0) (2.10) 
n~+ 1,x+ 2(0{1, 0) n~+ 1,x + 2 (0 ,  0{2) 

If we set 0{1=0{2=0{= 1 in (2.10) and recall that, since a ,o+av, l =  1, 
then n x ( O ) = l - n x ,  n~,~+l(O, 1)=n,~+l-n~,x+~, nx,~+l(1, O)=n~-n~,x+l ,  
and nx,,~+l(O, O)= 1 - n ~ - n ~ + l  +n~,x+m, we conclude from (2.10) that 
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/~(u~ - #) = In n~ - ln(1 - nx) 

+ l n ( 1 - n x _ l - n x + n x _ l , x ) + l n ( 1 - n x - n x + l  +nx,~+l)  

- ln(n~ - nx_ 1,x) - l n ( n x  + i - n~,x+ 1) (2.11) 

/~Jx+ 1.x+2 = ln(nx + 2 - n~+ 1,x + 2) + ln(nx + 1 - nx+ ~,~+ 2) 

- in nx+ 1,~+2 - ln(1 - nx+ 1 - nx+2 + nx+ 1,~ + 2) 

which is the obvious naive generalization of  (1.12), Fur thermore,  using the 
ordered lattice version of  (1.6) (the factor of 2 does not  appear, since the 
ordered expression n~,~+l is used), we see that  the relations (2.11) are 
generated, to within an additive constant,  by 

S[nx ,  nx, x + , ]  

= ~ [nx In nx + (1 - n x ) l n ( 1  - n x ) - n x ,  x+l In nx.x+ 1 
x 

- ( n x - n x ,  x + l ) l n ( n x - n ~ , ~ +  i ) -  ( n ~ + l -  n~,~+ 1)ln(n~+ 1 - n~,x + ~) 

- (1  - n ~ +  1 - n x  + n ~ , ~ +  1) l n ( 1  - n ~ +  1 - n ~  + n x , ~ +  1 ) ]  ( 2 . 1 2 )  

which is the obvious naive generalization of  (1.8). 
Finally, let us for completeness perform a partial reversion to recover 

the free energy functional known  from previous work. ~8) This of course is 
given by 

f l f f[nx, J ~ , ~ + l ] = ~ n ~ , x + 1 f l J ~ , x + l - S [ n x ,  nx, x+l]  (2.13) 

if we can solve for nx,~+, in terms of the {n~} and {J~,x+,}. In the present 
case, there is no trouble in doing so, directly f rom the second equat ion of 
(2.11). We find 

n ~ , ~ + ~ = [ ( 1 - e ~ . x + ~ ) ( n x + n ~ + l ) - l + q x ,  x + ~ ] / 2 ( 1 - e , , , x + l )  (2.14) 

where 

2 qx, x+l = [(1 - e ~ , ~ + ~ ) ( n x + n x + i ) - -  112 + 4e~,x+ l(1 - e ~ , x + l ) n ~ n ~ + l  

as well as 

n x - n ~ , ~ + l  = [-(1 - e x , ~ + l ) ( n ~ - n ~ + l ) +  1 - q~,~+ i]/2(1 --ex, x+l) 

n ~ + l -  n~,~+ 1 = [(1 - e ~ , ~ +  1)(nx+ 1 - n x ) +  1 - q~,~+ 1]/2(1 -ez,~,+~) 

1 - n x - n ~ , ~ + l  +nz ,~+ l  (2.15) 

= [(1 - e~,~+ ,)(2 - n~ - nx+ 1) -- 1 + q~,~+ ,3/2( 1 - e~,~+ ,) 
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leading to the rather complicated 

/~F[nx,  Jx, x + ,  3 

= ~  [ - l n 2 ( 1 - e x , ~ + l ) - n ~ l n n ~ - ( 1 - n ~ ) l n ( 1 - n x ) ]  

1 
- { - E 2 ( i _ e x ,  x+l ) { [ ( 1 - e x ,  x + l ) ( n x + n x + l ) - l + q x ,  x+l]  

x ln[(1 - ex,~+ 1)(nx + nx+ 1) - 1 + qx, x+ 1] 

+ [ ( 1 - e ~ , ~ + l ) ( n ~ - n ~ + l ) +  1-qx,~+~] 

x ln[(1 - ex,~+ 1)(n~ - nx+ 1) + 1 - qx, x+ 1] 

+ [ ( 1 - e ~ , ~ + l ) ( n ~ + l - n x ) +  1 - q ~ , x + l ]  

x ln[(1 - e~,~+ 1)(nx+ 1 - n~) + 1 - q~,x+ 1] 

+ [ ( 1 - e ~ , x + l ) ( 2 - n ~ - n x + l ) -  l+q~,~+~] 

x l n [ ( 1 - e x , ~ + l ) ( 2 - n ~ - n ~ + l ) -  l + q x , ~ + l ]  

- [(1 - e ~ , x + l ) ( n ~ , + n x + l ) -  1 + q~,~+l] In e~,x+l} (2.16) 

3. GENERAL ENTROPY FUNCTIONAL 

Let us defer specialization to one-dimensional or other simply 
connected lattices until it becomes absolutely necessary to do so. We have 
in mind then a periodic lattice with a full set of periods {x}, in which 
any site y can be empty, vy=O, or occupied by one of D components, 
Vy = 1, . ,  D. An interaction pattern will be characterized by a set of subsets 
of sites A = {Ai}, where each Ai contains the origin and no two Ai differ 
only by a lattice period. This means that the total interaction energy of the 
system, referred to the accumulated chemical potential, is given by 

q~{v} = ~  ~bEx+Ail[Vy; y E x + A i ]  (3.1) 
i x 

For example, in the case (2.1) of external potential and nearest neighbor 
internal potential on a one-dimensional integer lattice, but generalized 
to D components, then AI=[-0] ,  A2--[0, 1], and O x ( V ) = U x ( V ) - p v ,  
(~x,x+l(v, v ' )=Jx ,  x+l(v, v'). In order to separate the contributions of the 
various Ai, we will again adopt the convention that ~b vanishes if any of its 
sites is empty: 

~b(x + Ai)IVy, y ~ X + Ai] = 0 (3.2) 
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if 

H Yy~O 
y~x+Ai 

The grand potential 
1 ~2[~]=-~ln ~ e -~*{~} (3.3) 

now serves as generating functional for the multisite densities corre- 
sponding to any interaction cluster: 

n[~+A;? [C~y; y ~ x + A ; ]  

{v>,} zex+A, 

= 8~?[~]/O~[x + A;3 [C~, ; y e X + A;] (3.4) 

Joint densities belonging to groupings not present in the interaction pattern 
must be obtained via successive differentiation, as indeed can any of the 
multisite densities of (3.4). 

The dependence of D and the {nE~+,4;3} on the {~b~x+A;3 } becomes 
very sensitive in the vicinity of singular thermodynamic regions. This 
suggests an inverse formulation, ~ in which the {n[~+,4;3 } are taken as the 
independent variables, a suggestion which is reinforced by the exact 
solvability of a number of model systems in inverse form. For the inverse 
formulation to exist, ~b[~+A;3 must be solvable uniquely in terms of the 
n[~+,4;3, but this is automatic if the system may be approximated as one 
with a finite number of degrees of freedom: then s is concave in {~b}, since 
~ 2 ~ t ' ~ / ~ = - ~ ( ( n - ~ ) ( n - f t ) )  is negative definite; hence Z n ~ - f 2  is 
convex, with a unique minimum at n = Ot2/~?~b. To switch to the full set of 
{nEx+A;3 } as independent variables, we perform the complete Legendre 
transform 

TSEn[x+A;3] = -~Q[~]  + ~ ~, ~b[~+A;3[~]n[~+A;3[~] 
i,x 

(3.5) 

where c~ denotes the full set of relevant site occupations. The identification 
TS follows most pictorially from that of the right-hand side as P V +  U -  G 
in a uniform state, but more precisely from the fact that now 

OEx + A;3(~) = ~TS/OnEx + A;3[c~ ] (3.6) 

Our objective is to find the explicit expression TS[n ix+ A;? ] for a given 
interaction pattern A. The simplest path to take is that of first expressing 
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the {~b[x+A,]} in terms of the {nEy+~A} and then using (3.6) to determine 
TS to within a trivial additive constant, obtainable by choosing any special 
solved example. It is convenient to divide the task into two parts, as in 
Section 2, the first available for quite general lattices, the second requiring 
intense specialization. Suppose then, to start, that we focus on a subset of 
sites C whose mutual interaction is to be found in terms of available 
density information. For this purpose, we now surround C by enough 
empty sites that C does not interact with any other sites of the lattice. 
Clearly, this requires expanding C to a C covering all sites reached from C 
by some element in A: 

C =  {y[ y - z s  Cfor  some zeAi}  (3.7) 

If this is done, then {v(y)} for y ~ C  will be coupled only via the total 
interaction ~b r in C. In other words, we have, in obvious notation, 

c 

nc, c_cEc~, 0] =nc, d_c[O, 0] exp(- /~b~[~])  (3.8) 

to be "solved" as 

T /~bc [c~ ] = in nc, e_ c[0, 0] - in nc, a-c[e,  0] (3.9) 

Equation (3.9) is almost our desired expression. It can now be used 
inductively to find ~brx+Aa[~]: choose C =  [x +Ai] ,  and observe that 

= (3.10) 
(y, j l  y + A j c  x + Ai) 

But of course (3.4) and (3.10) require knowledge of densities other than the 
n Ex+Ail. To reduce our expression to this information requires strong 
assumptions on the form of the lattice. 

4. CONSEQUENCES OF LATTICE DECOMPOSABILITY 

If interactions are restricted to a finite range p, then fixing the occupa- 
tions of a set of sites C of diameter p will make it difficult for sites outside 
of C to influence each other. Diameter, for our purposes, can be defined as 
the maximum number of vertices on a nonintersecting path on C. This is 
the basis of the shielding approximation for substrate-bounded fluids. (1~ 
For a lattice which is simply connected, only one path connects a given 
pair of sites. Fixing the occupation of such a set along this path literally 
decomposes the lattice into two or more independent parts, and in par- 
ticular decouples the pair of sites in question. Under these circumstances, 
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all densities can be obtained in terms of those on C and its relatives, 
allowing us to complete the evaluation of (3.9), (3.10). 

To be explicit, suppose first that we have a one-dimensional integer 
lattice with all A ~ c A  of diameter ~<p+ 1. If q > ~ p + 2 ,  the conditional 
density 

nx + , . . . . .  + u ( ~ , ~ q l ~ " ' ~ u -  , )  

=nx+l  . . . .  +q(Oqc%'"o~2)/nx+2 ..... +q ,(o~2""~q 1) (4.1) 

then decomposes appropriately. To see this in detail, observe that now 
(2.3) generalizes to 

nx+l  .... +~,(~ " ' - ~ )  

= Z x + l  .... +p(O~l'''O~p) 2x+q+l--p ..... +q(O~q l__p'''~q) 

x {exp [  --,80T+, .. . .  +q(~ l " ' "  0~q)] }IN (4.2) 

where 

p 1 

Zx +1 .... + p(~)x + 1 " "  Vx + p)= 2 H I ]  C~ 1---y+,~('l~y ' ' ' ' '  Vy+s) 
{vy=O,l;y<~x} y<~x s = O  

Z x + q + l - p  ..... +q(~2x+q l _ p ' " V x + q )  

p -1  

= 2 1-I I ]  e ,  ...... y(,,y 
{vy O;y>x+q} y>x+q s=O 

It follows at once that 

(4.3) 

vy) 

=Zx+, .... +p(~,-. .~,,)  2~+~+,_p  .... +~(~q+l-p"~q) 
z x + ,  .... +,~(~2""~p) 2x+~,+ ,_ ,  .... +q- , (~q+ l  , , " ' ~q  ,) 

x exp[-fl~bxT+ i . . . .  +p(~, .-. ~p) exp[- /~r  . . . .  + q ( C % + ,  p .  

= n x + ,  .. . .  +q- l (~1]o~2"-~q , ) n x + 2  . . . .  + q ( ~ q [ ~ 2 " " O : q  , )  

which in the form 

nx+, .... +,,(~,. . .  ~q) 

= n x + ,  . . . .  + q _  , (o~l  . . . O~q_ , ) n x  + , . . . .  + q(C~2 . . . ~ q )  

nx+2 ... .  + q - l ( ~ 2 " " ~ q - 1 )  

.~q)] 

(4.4) 

(4.5) 
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allows us to conclude by induction that 
q--p 1 

F/x+l .... +q(~l "''0~q) = H nx+l+ . . . . .  +l+p+s(O~l+s'''O~l+p+s) 
s--0 

i q p - - I  );--1 
)< H FIx+2+s'"x+I+p+s(O~2+s'''O~I+P +s 

s=O 
(4.6) 

Suppose now that A includes all interaction subsets 
Ai c A p+ 1 ---- [0,..., p ]  which contain 0. Equation (4.6) is first written more 
concisely as 

A'cA /A 'cA 
nA[~]---- [ I  nA'[C(]/ ,lI}= na ' [~ ' ]  (4.7) 

IA'l=p+ l [A p 

where A' is connected and IN[ > p + 2 ,  connected. Here, as always, [~] 
indicates the relevant occupations for the density in question. In order to 
determine the entropy for the interaction scheme A, we will choose as inde- 
pendent variables all multisite densities nA[C~] of diameter d(A)<~p+ 1, 
i.e., those of the form rtx+Ai[~ ]. Furthermore, since 6~,o= 1 - Z ~ > o 6  .... 
only those with no unoccupied site, 1-Ix ~x > 0, are independent. In the 
present case, (3.9) reads 

fi~b#+ ai[a] = In  nx p+A2p+d(al)FO1 

--ln nx + a,x + [A2p+d(aiI__(p+ Ai)][O~, 01 (4.8) 

and so, applying (4.7), we quickly find, for any A with d ( A ) ~  p + 1, 

A-A'4-~ 
3~bAr[e] = ~ (--1)P+I+IA'I(lnnA'[O]---lnnA A'A ' A A'[~',O]) 

[A'l=p,p+ l 
~' =~ (4.9) 

To recognize the entropy from its derivatives, we must start by 
observing that, again from 6~,o--1-~2~>o 3 .... if ~ > 0 ,  ~' >0,  then 

an~,,A- A'[~', O ]/an A,,[c~"] 

f ( - -1 )  la '-a ' l  if A ' c A " c A ,  ~ 'cc ( '  
= l0  otherwise. (4.10) 

The notation e > 0 means that the components c~ x > 0 for all x. It is sim- 
plest now to write down the entropy as the obvious extrapolation of (2.12), 

S = E  E (--I)P+IAInA[O~] In nA[C~] (4.11) 
ot [Al=p,p+l 
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A running over contiguous (connected) subsets, and then verify that the 
full set of interactions is thereby produced. For checking (4.11), we first 
separate out the empty sites: 

S =  2 S ( - - 1 ) P + I A I r I A , , A  A , [ O : ' , O ] l n n A , , A _ A , [ O ( , O ]  (4.12) 
~>0 A ' ~ A  

l A [ = p , p +  l 

and then apply (4.10), using quotes for a tentative identification, 

"flq~A" [~" ] ' ' =  Z ( - - I ) P + I A I + I A " - - A ' I ( l n n A ,  A A,[~', 0] + 1) (4.13) 

A ' ~ A " ~ A  
[Al= p , p +  l 

It follows from (3.10) [the + 1 in (4.13) cancels out] that 

] A l = p , p + l  

#~A,,,LO~ I = ~, (--1)P+IAI+IA"--A'IlnnA, A_A,[c~,O] (4.14) 

A ' ~ A " ~ - A  
~ v ~ A " c A "  

But it is clear that 

(-1)  ~A'-~'~ = Z 
A ' ~ A " ~ A  A ' c A " ~ A  .A'(' 

/I " ~ A"  

(--1) IA"-A'I = (~ A . A" ,A ' (  1 - -  (~ A ' , ~  ) - -  (~ A ' , ~  

(4.15) 

so that (4.14) becomes 

"/~5, , , [~"]" = 
A 
S 

I A l = p , p +  l 
A . A " r  

( - 1 )  P+]al lnnA.A"A--A.A"[C~', 0] 

- ~ (--1)P+PAIlnnA[O] (4.16) 
I A [ = p , p + l  
A .A" .s f f5  

identical with (4.9), and hence verifying (4.11). 
If the lattice is not one-dimensional, but at least simply connected, e.g., 

a Bethe lattice, very similar considerations apply. The crucial generalization 
is that of (4.7), which, on similarly nibbling away from the outer vertices, 
now says that, if d(A)>>, p + 2, A connected, then 

A ' c A  /A '~A- -c~A  

n~[~]= IFI ~ ' [~ ' ] /  l-I (n~'[~']) ~ ' - ~  
d ( A ' ) = p +  1 d ( A ) = p  

(4.17) 
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running over maximal connected A;. Maximal denotes the inclusion of all 
vertices which do not change the diameter, ~?A is the set of boundary points 
of A, and q.~, is the number of (p + 1)-diameter maximal connected A" to 
which A' belongs Equation (4.8) generalizes in the obvious way, and if all 
subsets satisfying d(A)~< p + 1 occur in the interaction pattern--which 
need not be translation-invariant--then the extension 

A max conn 

s : E  E 
d(A)-- p,p+ l 

--1)P+d(A~(q A -- 1)nA[C~] In hAle] (4.18) 

following the path from (4.12) to (4.16), serves once more as the common 
generating functional in nA space. 

5. I N T E R A C T I O N  S U B P A T T E R N S  I 

The simplicity of the result (4.18) is of course due to the fact that the 
interaction pattern is closed in the sense that the inclusion of a subset Ai 
requires that of the subset Ai containing all paths of diameter ~<p+ 1 
between two sites in Ai, as well as any subset of Ai. This condition is 
required in order that the crucial interrelation (3.9) utilize available multi- 
site densities alone, the insertion of empty sites implying, according to 
6v,0 = 1 -  ~2~>0 6 .... that of sites of arbitrary occupation. In principle, any 
description between that of the grand potential, a functional of the ~bA 
alone, and entropy, a functional of the n A alone, is available by Legendre 
transform, but the entropy picture, when available, is certainly the simplest. 

We will want to apply two types of constraints to the closed interac- 
tion pattern. Indeed, the entropy formulation gracefully absorbs constraints 
either at the {~b} level or at the {n} level. To see this most economically, 
we divide the interactions into two subclasses, say {~bl, ~b2}, and corre- 
spondingly divide the densities into {n~, n2}, so that, in obvious shorthand, 

d S { F l l ,  n2} = ~ l { n l , / ' / 2 } - d n  1 + ~ 2 { n l ,  n 2 } .  dH 2 (5.1) 

Suppose first that the constraint set {n2} = 0  is to be imposed. It is 
clear from (5.1) that 

(5.2) 

so that 

S { n l  } = S { n l ,  0} (5.3) 
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serves as constrained generating 
{q~2} -- 0, with the solution 

Now, from (5.1), 

functional. Conversely, let us impose 

n2=m{nl} (5.4) 

dg{nl, m{n, } } = ~{n~,  m{nt} } .dn~ (5.5) 

showing that 

(5.6) 

is the constrained generating functional. In either case, it suffices to sub- 
stitute the constraint into the entropy. 

One extreme subpattern now is that of a single species with hard-core 
interaction of range p. Hence c~ = 0, 1 and n11(1) = 0 for 2 ~ d(A) ~< p + 1. It 
follows that for A ' c  A, 

n~'A_A'[1, O]= ~ (--1)JA"InA'+A"[1] 
A ' = A  A" 

= 1 -  ~ n~(1) for IA ' I=0  
N E A  

= nA,(l ) for IA'I = 1 

= 0  for t A ' I > l  (5.7) 

Consequently, (4.18) now becomes 

A m a x  c o r m  

S= -~nxlnnx+ 2 
d ( A )  -- p 

1-  In 1 - ~  

....... ( ) (  ) 
- Z 1 -  Z ~x in 1 -  Z ~x (5.8) 

d ( A ) = p +  1 x e A  x ~ A  

In this case Ill 13) the internal energy U =  0, so course t iff= -S .  Note, too, 
that combinations of hard and soft interactions proceed similarly. 

A more complex class of subpatterns is that in which only some sub- 
collection BcA= {Ai} is to contribute to the interaction pattern, i.e., 
interactions within A - B are to vanish. The simplest transcription from the 
entropy viewpoint is that, whereas 

fl~x+A,[O~]=~g/Onx+Ai[O~'l for A~cB, ~ < 0  (5.9a) 
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the remaining conjugate interactions are to vanish, 

O = ~ S / ~ Y l x + A i [ O ~ ]  for A i c A - B ,  c~>0 (5.9b) 

While (5.9) is very neat, and in accord with the structure of collective 
modes uncovered in a free energy format, (8) explicit profile equations for 
this system require the explicit elimination of the nx+~i for A i~  A -  Bi. 
According to (5.6), the elimination can be done directly in the entropy 
expression. 

The structure of the entropy functional for simply connected lattices 
with closed interaction pattern is, as we have seen, local to within the range 
of the interaction. If the closure condition is broken, as is in what are 
regarded as realistic patterns, the topology of the connection network no 
longer mirrors that of the lattice, and the resulting feedback loops may 
conceivably impose nonlocality on the entropy structure (see ref. 14 for this 
phenomenon in a free energy context). Let us investigate this possibility for 
some familiar interaction patterns of a simple (one-component) lattice gas. 
Since only c~x = 1 is nonempty, we can here use the abbreviation 

nail,..., 1] =hA (5.10) 

and consequently 

nA--A,,a'[1, O]= ~ (--1) IA' ~"lnA_A,,, where A.A'=(25 (5.11) 
A " c A '  

The one-dimensional integer lattice serves as a suitable framework for our 
discussion, and for closed range p interaction, (4.18) then reduces to 

S = ~  nx+~tp[0~] ln nx + Ap[Ot ] 
x, c~ 

- -  Z n x + A P + l [ O t ]  In nx+A~+~[0~ ] 
x, ct 

x A c A P  A A A A 

x , A = A P  +1 A A A A 

(5.12) 

Consider now the simplest nontrivial case, p = 2 ,  or next-nearest- 
neighbor (NNN) interaction. The interactions are represented schemati- 
cally, and then mapped onto a two-row triangular lattice with 3-site inter- 
action, in Fig. la. The entropy is iocal, 
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S=~nx ,~+,  In n~,x+ 1 + ~  (n~-nx,~+~)ln(n~-n~,x+t) 

+ ~  ( n x + , - n ~ , x + l ) l n ( n ~ + , - n ~ , x + ~ )  

+ ~  (1 - n x - n ~ + l  +n~,~+l)In(1--n~-n~+ 1 +nx, x+~) 

- - Z n x  l ,x ,x+~ l n l ~ l x _ l , x , x + l  

- ~ ( n x  1,x-n~ 1 ..... +l ) ln(n~- , ,x -nx  l ..... +i) 

- Z  ( n x , x + l - n ~ - I  ..... +~) ln(nx, x + , - n ~ _ ~  ...... +,) 

- ~ ( n x  ~,~+ i - n~_ 1 .... +i)ln(nx_l,x+l-n~_a .... +,~) 

- ~ ( n ~ - n x  l,x-n~,y+l+n:~ 1,~+~) 

x ln (nx -n~  l ,~-n~,~+ l + n x _ l  . . . .  +i) 

- ~ ( n x  1 - n x - l , x - n x  ~.x+l+n~-~ ..... +1) 

x l n ( n ~ - l - n ~ - ~ , x - n x  1,.~+l+nx 1 ...... +1) 

- ~  (n~+~-n~_~.~+,-n~,x+~ +.~_l .... +~) 

x ln (nx+~-nx - l , x+l -nx ,  x+l +nx 1 ...... +1) 

- ( 1 - n x  a - n x - n x + l  +nx ~l,x+n~,_l,x+l 

Ar-fflx, x + l - - t l x  l ,x ,x+ I)  

x l n ( 1 - n x _ l - n x - n ~ + l  +n~ ~,~ 

"J- n x _  1,x+ 1 -]- fflx, x + 1 - -  Klx-- l ,x ,x + l ) 

1 2 3 4 5 

1 3 5 

I 3 5 

1 2 3 4 5 

Fig. 1. Reduction of NNN pattern. 

237 

(5.!3) 
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which is a function of the {n~,nx,~+l, n~_1,~+1, n~ t . . . .  +1}, and of 
course so are the profile and the various direct correlations, i.e., dOA/~nA'. 

To reduce (5.13) to the bond and site interaction triangular lattice 
(Fig. lb), we must eliminate the 3-site interaction. Since 

= - l n n x _ l  . . . .  +l + l n ( n x , x + l - n x _ l  . . . .  +1) 

+ln(nx 1 , x + l - n x  1 . . . .  +1) 

+ln(n~ 1,x-nx_m .. . .  + l ) - - l n ( n x + l - - n x , ~ + l - - n x _ l , ~ + l + n ~  1 . . . .  +1) 

- - ln(n~--n~ 1,~--nx,~+l+n~ 1 . . . .  +1) 

- - l n ( n ~ _ l - - n x _ l , ~ - - n ~  1,~+1+n~_1 ..... +1) 

+ l n ( 1 - - n ~ _ t - - n ~ - - n ~ + l + n ~ _ l , ~ + n x  1,x+l+nx, x + l - - n  ~ l . . . .  +1) 

(5.14) 

this involves "only" the algebraic solultion of (5.14) for nx_l  ..... +1 and 
substitution back into (5.13); locality still obtains. 

A further reduction to two-row square lattice (Fig. lc) then requires 
the elimination of alternate nearest neighbor bonds as well, and hence that 
of iV/2x, 2x+ 1" And of course, the associated 3-site densities n2x_l,2x,2x+l, 
n2x, Zx+l,2x+2 must also be eliminated. A glance at (5.13) shows that the 
equations fi~b2x, 2x + 1 = 0, fl~b2x - -  1,2x, 2x + 1 -~" 0, and fi~b2x,2~ + 1, 2x + 2 ----- 0 indeed 
allow one to solve for n2x,2x+l, n2x_l,Zx, Zx+l, and nzx,2x+l,Zx+z--in 
principle--in terms of the relevant n z x _ l ,  n2x , n2x+l , n2x+2 , n2x, Zx+l, 
n Z x _ l , 2 x  , n2x, 2x+2, and n2x-l,2x+ 1, and so the locality of the 2-row square 
lattice entropy folows. 

6. I N T E R A C T I O N  S U B P A T T E R N S  II 

A more usual technique (14) for constructing a higher dimensional 
lattice from a one-dimensional one is that of maintaining nearest neighbor 
pair interaction, but combining several sites into a "higher-spin" supersite. 
This procedure can be carried out in different ways, all of which must be 
equivalent to the formulation of Section 5, but may nonetheless have 
notational advantages. In particular, it might appear from the examples of 
Section 5 that the entropy will always be local. This is hardly the case, but 
its investigation does require more complex interaction patterns, for which 
purpose notation can be important.  
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For nearest neighbor interaction, (5.10) reduces to the obvious mixed 
species generalization of (2.12): 

S=~nx(~) lnn~(~z ) -  ~ n~,~+t(~,~')lnn~,~+l(~,c() (6.1) 
x, c~ x, ~, cr 

where 

~ > 0  

nx,~+~(~,O)=n~(~)-  ~ n~,~+m(~,~') 
~'>0 (6.2) 

n ..... + l ( 0 , . ) = n ~ + , ( c 0 -  ~ n .... +m(~',~)  

n~.x+ 1(0, 0) = l - ~ ~ ( ~ ) -  ~ n~+ m(~) + Y~ ~ , ~ .  ~(~, ~') 
~ > 0  ~ ' > 0  ~ > 0  

~ ' > 0  

In conformity with our intended application, we imagine that each location 
x is in fact a collection of D sites (where D can also depend upon x). Thus, 

now denotes a subset A = 2 ~ =  (1,..., s), and the argument 0 refers to 
the empty set ~ .  On differentiating (6.1) with respect to n~(A) and 
nx.x+m(A, A') for A, A ' # ~ ,  and using the explicit form of (6.2), we now 
find the corresponding profile equations 

fi(kx(A m ) = In nx(A 1 ) - In n~(~5) 

+lnnx,~+1(c~, ~ ) + l n n ~  1,x((25, ~25) 

-lnn~,~+m(Am,lgS)-lnn~ m,~(.~, A1) (6.3a) 

flqi~,~+ 1(A1, A2) = - in n~,x+ ~(~25, ~J) 

+ In n~.~+ 1(~, A2) + In n~,~+ ~(Am, ~ )  

- I n  nx,~+ l(Am, A2) (6.3b) 

In (6.3), ~b~(A m) represents a full IA m I-site "self"-interaction at location 
x, and ~b~,x+ 1(A1, A2) a [Am[-[A21-site "mutual" interaction. If we have in 
mind a lattice of vertices interacting across bonds, only singlet and pair 
interactions are nonvanishing, and any interaction is a superposition of 
these. In other words, we will have 

~bx(A) = ~ ~bx(2) + ~ ~bx(2, 2') (6.4a) 
2 ~ A  2 <,,U ~ A 

r ~ q~x,x+m(2,)o') (6.4b) 
) , c A  

2 ' E A '  
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with at most the set 01 = {~x(2), Ox(2, 2'), @x,x+l(2, 2')} as independent 
interactions. Thus, all but the corresponding set n~= {n~(2), nx(2, 2'), 
n~,~+ ~(2, 2')} are to be eliminated from the entropy. 

Since combinations of {~b} are to be constrained to vanish, (5.6) 
would be applicable only if we were willing to introduce the associated 
conjugate densities. But we want to retain the set n~ as independent 
variables, and so it is not correct to merely eliminate the n2 in the entropy. 
However, from the fact that the microscopic n~ occurs as the coefficient set 
of q~t in the energy, we know that there exists an entropy function on the 
space n~, with 01 as conjugates. Thus, if the constraints allow us to write 

n 1 =m{n~} (6.5) 

as in (5.4), the resulting profile 

OS{nl 'n2}  n2= 
0171 m{nl} 

(6.6) 

can be "integrated back" to produce 

~n~ 
(6.7) 

by simply turning up all densities nl from 0: 

f~ 8 S'{2nl} d2 

fO 03{2nl} d2 
nl .  82n~ 

fO~ S{2n I n2} 
8 d2 

(6.8) 

The only problem is that of finding n 2 = m { n l }  explicitly, and this then 
determines the structure of S. 

Let us start our in-principle elimination with the (x, x + 1) interaction 
terms. According to (6.3b) and (6.4b), which are valid for all A~, A2, there 
are (2 ~  1) 2 independent relat ions 

nx,~ + ,(A1, A2) nx, x + l(f,~, ~ )  - I-I nx'x+l(21'22)nx'x+'(~'~J'~'~) 
aj ~A~ nx,~ + , ( 2 i ,  ~ )  n~,x + 1(~3, 22) 

(6.9) 
nx.x+ 1(A1, ~ )  nx.x+ , ( ~ ,  A2) 

22~A2 
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Appending the pair equations of (6.20) in the form of 2 - 2 ~  
independent relations 

2 nx, x+l( A1,  A2)  = nx+l(A2) 
Al 

~nx.x+l(A1, A2)=nx(A1) 
A2 

(6.10) 

we can solve the 22D quantities nx,~+t(A~, A2) in terms of the two-site 
densities n~,~+l(2~, 22). The solution is complicated, but this is a local 
expression, 

n~,x+~(A1,A2)=fA~,A2{n~,~+l(2,2');nx(A),nx+~(A)} (6.11) 

Elimination of any further bonds, ~x,x+l(,~,-~')=0 for some subset 
(2, 2') e A 2 ~ 2 D | 2 D, would not alter the result. 

We proceed next to the (x) interaction terms. Combining (6.3a) and 
(6.4a), we have the 2 ~  1 

nx(A) 
..(;g) 

nx,~ + l(A, f2~) nx_ ~,~((25, A) 
n~,~+ ~(~, ~ ) n ~ _  l,~(~, ~Z~) 

x]-~ n~(2) n~+l(~J ,~)n~ 1 , x ( ~ , ~ )  
nx( ) 

nx()o2') n~,~, + i(f2J, (25)nx_l,~(f25, (25) 
x 1] nx(~')nx,~+l(2)c',(25)nx ~,x(~,22') 

2<2'EA 

(6.12) 

to be coupled of course with the single 

nx(A) = 1 (6.13) 
A 

Equations (6.t2) and (6.12) can then be solved in the form 

nx(A)=gA{nx(2)n~(ZU);n:,,x+l(A',A"),n~_l,x(A',A")} (6.14) 

But consider now the joint solvability of (6.11) and (6.14). If D = 2 ,  all 
nx(A) refer to vertices and bonds; since these are indeed our independent 
variables, the set (6.14) is irrelevant, and (6.11) yields, via (6.8), a local 
entropy, as in Fig. lb. If D > 2 ,  substitution of (6.11) into (6.14) allocates 
both n~+l and nx_ 1 to nx, so that a difference equation results, with of 
course a nonlocal solution. Locality is therefore broken at this level. 

822/60/1-2-16 
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7. D ISCUSSION 

In summary, we have seen that the entropy functional serves as an 
effective tool in the analysis of lattice gases on simply connected lattices, 
as well as on non-simply-connected ones which are closely related. The 
hallmark of the entropy in these cases is that it is expressible in terms of 
an entropy density which is local in that it covers only a finite range of 
sites. This expression may be complicated, but it is strictly algebraic. 
Locality is convenient when it exists, but does imply a rather sparse 
phenomenology, as opposed to that of more common non-simply- 
connected lattices, in which feedback loops exert a crucial influence on the 
structural thermodynamics. 

While the development reported here does not bear directly upon 
problems encountered in such realistic lattices, it does suggest approxima- 
tions, largely well known in the literature. Simplest is a direct transcription 
of (4.18), totally in the spirit of Bethe's original Ising model approxima- 
tion, (15) in which a lattice is matched locally to an appropriate Bethe 
lattice. In other words, we now reproduce (4.18), but choose the sets A of 
the lattice in question. For example, for a nearest neighbor interacting 
square lattice, (4.18) would transcribe to the approximation 

~, 1 ~'~' 
S = 3  n ~ ( e ) l n n ~ ( e ) - ~  ~ nxy(~,c()lnn~y(C~,~') (7.1) 

x ( x , y )  

while expressions of the Kikuchi type result (16) from choosing a nominal 
range p > 1 and eliminating the unwanted (two- and) multisite interactions. 
It is also to be noted that, in the form 

where 

S = - ~ nx(~) In nx(e) 
x 

2 y' n~(c~) ny(C() gxy(C~, c() In gxy(C~, ~') 
< x , y )  

(7.2) 

gxy(c~, ~') = nxy(~:, c()/nx(oO ny(7) 

(7.1) and its descendants have suggestive extensions to continuum fluids 
(see, e.g., ref. 5). 

The approximations typified by (7.1) are of course tentative, since they 
address the question of interaction loops in at most a primitive local 
fashion. A next stage is clearly the analysis of true multiloop networks. 
Some first steps in this direction have been taken (s'a7) in the context of free 
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energy density functionals, and preliminary evidence indicates that similar 
techniques will be effective in the entropy format, with similar qualitative 
consequences. This work will form the subject of a future publication. 
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